在光通信领域,徐等人开发了飞秒氧化石墨烯锁模掺铒光纤激光器,与基于石墨烯的可饱和吸收体相比,具有性能有所提升,并且具有易于制造的优点[95],这是GO/RGO在与光纤结合应用**早的报道之一。在传感领域,Sridevi等提出了一种基于腐蚀布拉格光栅光纤(FBG)外加GO涂层的高灵敏、高精度生化传感器,该方法在检测刀豆球蛋白A中进行了试验[96]。为了探索光纤技术和GO特性结合的优点,文献[97]介绍了不同的GO涂层在光纤样品上应用的特点,还分析了在倾斜布拉格光栅光纤FBG(TFBG)表面增加GO涂层对折射率(RI)变化的影响,论证了这种构型对新传感器的发展的适用性。图9.14给出了归一化的折射率变化数据,显示了这种构型在多种传感领域应用的可能。石墨原料片径大小、纯度高低等以及合成方法不同,因此导致所合成出来的GO片的大小有差异。应该怎么做氧化石墨导热膜

光学材料的某些非线性性质是实现高性能集成光子器件的关键。光子芯片的许多重要功能,如全光开关,信号再生,超快通信都离不开它。找寻一种具有超高三阶非线性,并且易于加工各种功能性微纳结构的材料是众多的光学科研工作者的梦想,也是成功研制超高性能全光芯片的必由之路。超快泵浦探针光谱表明,重度功能化的具有较大SP3区域的GO材料在高激发强度下可以出现饱和吸收、双光子吸收和多光子吸收[6][50][51][52],这种效应归因于在SP3结构域的光子中存在较大的带隙。相反,在具有较小带隙的SP2域中的*出现单光子吸收。石墨烯在飞秒脉冲激发下具有饱和吸收[52],而氧化石墨烯在低能量下为饱和吸收,高能量下则具有反饱和吸收[51]。因此,通过控制GO氧化/还原的程度,实现SP2域到SP3域的比例调控,可以调整GO的非线性光学性质,这对于高次谐波的产生与应用是非常重要的。官能化氧化石墨类型氧化石墨烯(GO)的比表面积很大,厚度小。

氧化石墨烯表面含有-OH和-COOH等丰富的官能团,在水中可发生去质子化等反应带有负电荷,由于静电作用将金属阳离子吸附至表面;相反的,如果水中pH等环境因素发生变化,氧化石墨烯表面也可携带正电荷,则与金属离子产生静电斥力,二者之间的吸附作用**减弱。而静电作用的强弱与氧化石墨烯表面官能团产生的负电荷相关,其受环境pH值的影响较明显。Wang44等人的研究证明,在pH>pHpzc时(pHpzc=3.8),GO表面的官能团可发生去质子化反应而带负电,可有效吸附铀离子U (VI),其吸附量可达到1330 mg/g。
TO具有光致亲水特性,可保证高的水流速率,在没有外部流体静压的情况下,与GO/TO情况相比,通过RGO/TO杂化膜的离子渗透率可降低至0.5%,而使用同位素标记技术测量的水渗透率可保持在原来的60%,如图8.5(d-g)所示。RGO/TO杂化膜优异的脱盐性能,表明TO对GO的光致还原作用有助于离子的有效排斥,而在紫外光照射下光诱导TO的亲水转化是保留优异的水渗透性的主要原因。这种复合薄膜制备方法简单,在水净化领域具有很好的潜在应用。。氧化石墨是一种碳、氧数量之比介于2.1到2.9之间黄色固体,并仍然保留石墨的层状结构,但结构更复杂。

由于GO表面具有较高的亲和力,蛋白质可以吸附在GO表面,因此在生物液体中可以通过蛋白质来调节GO与细胞膜的相互作用。如,血液中存在着大量的血清蛋白,可能会潜在的影响GO的毒性。Ge与其合作者[16]利用电子显微镜技术就观察到牛血清蛋白可以降低GO对细胞膜的渗透性,抑制了GO对细胞膜的破坏,同时降低了GO的细胞毒性。基于分子动力学研究分析,他们推断可能是由于GO-蛋白质之间的作用削弱了GO-磷脂之间的相互作用。与此同时,GO对人血清蛋白的影响也被其他科研工作者所发现,特别是他们观察到了GO可以抑制人血清蛋白与胆红素之间的作用。因此,GO与血清蛋白之间是相互影响的。石墨、碳纤维、碳纳米管和GO可以作为荧光受体。官能化氧化石墨类型
常州第六元素公司可以生产多个型号的氧化石墨。应该怎么做氧化石墨导热膜
GO膜在水处理中的分离机理尚存在诸多争议。一种观点认为通过尺寸筛分以及带电的目标分离物与纳米孔之间的静电排斥机理实现分离,如图8.3所示。氧化石墨烯膜的分离通道主要由两部分构成:1)氧化石墨烯分离膜中不规则褶皱结构形成的半圆柱孔道;2)氧化石墨烯分离膜片层之间的空隙。除此之外,由氧化石墨烯结构缺陷引起的纳米孔道对于水分子的传输提供了额外的通道19-22。Mi等23研究认为干态下通过真空过滤制备的氧化石墨烯片层间隙的距离约为0.3 nm。应该怎么做氧化石墨导热膜