灰氢是指通过化石燃料(如煤炭、石油、天然气等)燃烧或重整制取的氢气。在生产过程中,会释放大量的二氧化碳,因此被称为“灰氢”。这种制氢方式成本较低,但对环境影响较大,是目前全球主要的氢气生产方式。蓝氢是在灰氢的基础上,应用碳捕集与封存技术(CCUS),将生产过程中产生的二氧化碳捕获并封存,从而减少碳排放。虽然蓝氢的碳排放强度相对较低,但由于需要额外的碳捕集和封存技术,其生产成本较高。绿氢目前没有统一定义,国内俗称的绿氢就是可再生氢,即通过使用可再生能源(例如太阳能、风能、核能等非化石能源)制造的氢气。现阶段电解水是主要的将这些外部能源吸收并生产出氢气的方式,力争实现零碳排放。氢能是一种二次能源,必须通过化学过程由存在于化合物中的氢元素转化而来。巴彦淖尔工业电解水制氢设备企业

碱性电解水技术是电解水技术中发现得早的,也是目前电解水技术中为成熟的。其原理可以简单地描述为:在两个电极之间施以直流电,并用隔膜将阴阳两极分离开来,在阳极,OH-发生氧化反应生成氧气,在阴极,H+被还原生成氢气,如图 1-1 所示。通常高比表面的镀镍钢板或者镍铜铁作为阳极催化剂,并在上面负载锰、钨和钌的氧化物,质量分数为 30%的 KOH 或者 Na OH 溶液作为电解液,镀有高比表面镍或者镍钴合金的钢材则作为阴极催化剂,运行时,槽压一般在 1.9 V 到 2.6 V 之间。菏泽附近电解水可广泛应用于氢能工程项目、制氢加氢站、发电厂、金属冶炼、多晶硅与半导体制造等领域。

碱性电解水技术比较大的缺点在于工作电流密度较低、电解槽效率不高、占地面积大。特别在冬季,设备需要经过较长时间预热,启动时间大概需要2 h。不过碱性电解水电解槽、隔膜等设备、材料的加工、制备工艺在我国已经基本成熟,产业链相对完善,是目前在我国**适合规模化的技术路线。通过调研了解,目前国内比较大单槽制氢规模已经达到 3000 Nm³/h,电解槽直流电耗比较低可以达到4.2 kW·h/Nm³。其原理为在两个电极之间施以直流电,并用隔膜将阴阳两极分离开来,在阴极水分子被还原,生成氢气和氢氧根离子,生成的氢氧根离子穿过隔膜到达阳极,在阳极侧失电子析氧,生成氧气和水。
电解水制氢的基本原理是在直流电的作用下,水分子在电解槽中被分解成氢离子和氢氧根离子,氢离子在阴极得到电子还原成氢气,而氢氧根离子在阳极失去电子氧化成氧气。碱性电解水制氢:原理:利用碱性电解质(如氢氧化钾或氢氧化钠)作为导电介质,在电解槽中进行水电解。特点:技术成熟稳定,成本相对较低,但反应速度较慢,能量效率相对较低,且产生的氢气纯度不高,需要进行后续处理。应用:适用于大规模工业制氢,尤其是在电力成本较低的地区。PEM电解槽由质子交换膜、催化剂、气体扩散层和双极板等零部件组装而成。

电解水制氢,这一技术的**在于水分子在电解槽中的分解过程。当直流电通过时,水分子被分解为氢离子和氢氧根离子。随后,氢离子在阴极获得电子,经历还原反应生成氢气;而氢氧根离子则在阳极失去电子,发生氧化反应生成氧气。整个过程的化学方程式简洁明了:2H2O → 2H2 + O2。碱性电解水制氢:原理:借助碱性电解质,如氢氧化钾或氢氧化钠,作为导电媒介,促使水电解在电解槽中顺利进行。特点:该技术已经过长时间的发展,稳定性良好,且成本相对较低。但遗憾的是,其反应速度较慢,能量转换效率不高,同时产生的氢气纯度也需进一步提升。应用:碱性电解水制氢技术主要适用于大型工业制氢场合,特别是在电力成本低廉的地区。但该制氢方式需要消耗大量的电能,其中电价占总氢气成本的60%~80%。山东电解水制氢设备企业
随着氢燃料电池技术的突破,市场对氢的需求逐渐增长。巴彦淖尔工业电解水制氢设备企业
碱性水电解技术(ALK)是指在碱性电解质环境下进行电解水制氢的过程,电解质一般为30%质量浓度的KOH溶液或者26%质量浓度的NaOH溶液。较之于其他制氢技术,碱性电解水制氢可以采用非贵金属催化剂,且电解槽具有15年左右的长使用寿命,因此具有成本上的优势和竞争力。碱性电解水制氢技术已有数十年的应用经验,在20世纪中期就实现了工业化,商业成熟度高,运行经验丰富,国内一些关键设备主要性能指标均接近于国际先进水平,单槽电解制氢量大,易适用于电网电解制氢。但是,该技术使用的电解质是强碱,具有腐蚀性且石棉隔膜不环保,具有一定的危害性。巴彦淖尔工业电解水制氢设备企业