声学成像仪基本参数
  • 品牌
  • 芬兰NL
  • 型号
  • LF10
  • 类型
  • 气体检漏仪,气密性检漏仪,电火花检漏仪,真空检漏仪
  • 测量原理
  • 超声波成像
  • 测量对象
  • 空压机、蒸汽管道、风力叶片制造、气体管道、阀门、法兰
  • 声学测量
  • 124 个低噪声 MEMS 麦克风
  • 带宽
  • 2kHz - 65 kHz
  • 动态范围
  • -15 dB~120 dB
  • 测量距离
  • 0.3米~130米
  • 功能特征
  • 自动滤波、自动测距
  • 软件功能
  • 泄漏量及成本预估、专业报告生成
声学成像仪企业商机

NLCamera声学成像仪采用了自动滤波技术,自动消除典型工业干扰,为用户提供更加精确的定位信息,降低因专业问题导致的风险漏判问题。工业现场是一个充满背景噪音的环境。用耳听的方式查找泄漏点是不可能完成的工作。为了克服工业环境噪声,声学探头和声学成像仪通常使用超声波频率,因为背景噪声在高频下的干扰更小。气体泄漏通常在20kHz以上频段有良好的效果,但高频上也会有干扰噪声。在这些情况下,声波成像仪必须能够区分泄漏的声源与其他干扰的声源。目前市场上大多数声学成像仪都让用户使用滑块,手动选择频率范围来过滤干扰噪声。这种耗时的试错方法大幅增加了使用的难度和问题漏判的风险。手持式声学成像仪,局部放电检测,气体泄露检测,声学成像仪厂家-上海垂智供应链多年来致力于声学成像仪,工业声学成像仪,视频声学成像仪生产批发,产品广应用于电力,石化,船舶等领域.欢迎您的来电或留言咨询.局部放电会加速绝缘材料老化和破损,进而加速设备失效,甚至引发事故。安徽气体泄漏声学成像仪管道密闭性检测

声学成像仪

处理背景噪音在比较多种标准的超声波检测器时,您可能会觉得漏气和局部放电(PD)发出特定超声波频率的声音(一般在40kHz左右),为了检测到此类声音,应使用此频率范围。然而,事实并非如此-在某些情况下,这样做可能有益,而在其他一些情况下,这样做可能会有损检测灵敏度。适合用于检测的频率取决于几个不同的因素。典型的加压空气泄漏或PD产生波段宽广的声音,从人耳能听到的频率到超声波频率。需要注意的是,一般发现此类问题的环境并非完全安静的环境,而是有着不同程度背景噪音的工业或室外环境。手持式声学成像仪,局部放电检测,气体泄露检测,声学成像仪厂家-上海垂智供应链多年来致力于声学成像仪,工业声学成像仪,视频声学成像仪生产批发,产品广应用于电力,石化,船舶等领域.欢迎您的来电或留言咨询.湖北NL LF10-Kit声学成像仪结构异响定位检测通过Wi-Fi,NL相机自动将检测快照上传至NL Cloud软件,方便用户备份和分析。

安徽气体泄漏声学成像仪管道密闭性检测,声学成像仪

声学成像仪LF10-kit利用智能AI增强学习驱动,配合自动滤波(AutoFliter)和自动测距(AutoDistance)功能协同工作,实现无缝的用户体验。自动滤波功能可为不同测试环境自动选择正确频率范围,并通过优化算法消除典型的工业干扰。自动测距可自动设置与泄漏点之间的距离,为精确定位、实时泄漏量预估提供保障。在应用案例方面,我们已经为众多客户提供了优绣的产品和服务,帮助他们解决了各种设备故障和泄漏问题,提高了生产效率和节能减排效果。手持式声学成像仪,局部放电检测,气体泄露检测,声学成像仪厂家-上海垂智供应链多年来致力于声学成像仪,工业声学成像仪,视频声学成像仪生产批发,产品广应用于电力,石化,船舶等领域.欢迎您的来电或留言咨询.

在工业生产过程中,阀门、法兰和气体管道的泄漏不仅给生产带来严重的安全隐患,还造成了大量的能源浪费。传统的泄漏检测方法依赖于维护人员的长时间搜寻和听觉判断,不仅效率低下,而且容易忽视微小的泄漏点。幸运的是,LF10声学成像仪的出现彻底改变了这一局面。它能够捕捉到人耳无法察觉的声音,并迅速准确地定位到微小的气体泄漏点,极大地提高了检测效率和准确性。这对于工业领域的安全生产、成本控制和能源效率提升具有划时代的意义。此外,压缩空气泄漏检测也是节能减排领域的一项重要手段。据全球统计数据显示,每年因压缩空气泄漏造成的能源浪费高达200亿美元。而通过采用高精度的检测技术,我们可以及时发现并修复设备中的泄漏问题,从而明显降低能源消耗,减少企业的能源成本。这不仅有助于企业的可持续发展,也为环境保护做出了积极贡献。NL Cloud软件还提供了PD分类和严重性分析等深入信息,助力用户了解设备状况。

安徽气体泄漏声学成像仪管道密闭性检测,声学成像仪

在我们的日常生活中,总有不同的声音围绕着我们,无时无刻不在通过振动敲击着我们的耳膜,并通过内耳毛细胞将振动转变为电信号传输至大脑。然而,在获取信息时,人类通过听觉捕获的信息量不足视觉的四分之一,且听觉在空间定位方面远逊于视觉。那么,有什么技术手段可以让我们看见声音呢?答案就是——可视化声学成像仪。声成像与声波可视化概念的研究起源可以追溯到1864年由德国物理学家托普勒发明的纹影成像法。即通过对光源进行调整,就能在原本透明的空气中看到声波造成的空气密度变化。在纹影成像的基础上,学者们根据不同密度气流的折射对背景上纹理扭曲程度的分析,计算出空气密度的变化,并把它转化成纹影图像,即背景纹影法。手持式声学成像仪,局部放电检测,气体泄露检测,声学成像仪厂家-上海垂智供应链多年来致力于声学成像仪,工业声学成像仪,视频声学成像仪生产批发,产品广应用于电力,石化,船舶等领域.欢迎您的来电或留言咨询.声学成像仪应用于建筑物的结构体检测中,通过声波的传播和反射情况,可检测出梁柱结构的裂缝和松动等问题。浙江气体泄漏声学成像仪管道密闭性检测

声学成像仪检测混凝土内部的空洞和裂缝。通过声波在混凝土中的传播情况,可以判断混凝土的密实性和完整性。安徽气体泄漏声学成像仪管道密闭性检测

检测距离对于局部放电很重要与问题来源的距离在选择频率中发挥重要作用。频率越高,声音随距离衰减越快,导致灵敏度和探测范围变差。下面是一个例子:如果有一个声源,在一米的距离上测得它为40dB(Z)(一般是少量漏气或中等规模的PD),并且麦克风可拾取大于0dB(Z)的声音,则正常情况下可在1khz下从约100米的距离和在100khz下从约10米的距离上检测到该声源。

高频下的性能与所用的麦克风数量有关要检测频率很高的声源,声学相机必须配备大量麦克风,并且这些麦克风彼此相距很近。否则将发生空间混叠的问题,也就是在无效的位置显示错误的结果和声源。为了市场营销,往往倾向于让声学相机支持更高的频率,因为数字越大一般看上去越好。但实际上使用过高的频率并没有任何好处,反而导致性能变差。 安徽气体泄漏声学成像仪管道密闭性检测

与声学成像仪相关的**
信息来源于互联网 本站不为信息真实性负责