电压钳技术是由科尔发明的,并在20世纪初由霍奇金和赫胥黎完善。其设计的主要目的是证明动作电位的产生机制,即动作电位的峰值电位是由于膜对钠的通透性瞬间增加。但当时还没有直接测量膜通透性的方法,所以用膜电导来测量离子通透性。膜电导测量的基础是电学中的欧姆定律,如膜Na电导GNa与电化学驱动力(Em-ENa)的关系,膜电流INaGNa=INa/(Em-ENa)。因此,可以通过测量膜电流,然后利用欧姆定律来计算膜电导。然而,膜电导可以通过使用膜电流来计算。这个条件是通过电压钳技术实现的。下一张幻灯片中右边的两张图显示了squid的动作电位和动作电位过程中膜电流的变化,这是霍奇金和赫胥黎在半个世纪前用电压钳记录的。他们的实验证明了参与动作电位的离子电流由三种成分组成:Na、K、Cl。对这些离子流进行了定量分析。这项技术为阐明动作电位的本质和离子通道的研究做出了巨大贡献。准确捕捉离子通道动态,膜片钳技术助您一臂之力!双电极膜片钳蛋白质分子水平
1976年德国马普生物物理化学研究所Neher和Sakmann在青蛙肌细胞上用双电极钳制膜电位的同时,记录到ACh启动的单通道离子电流,从而产生了膜片钳技术。1980年Sigworth等在记录电极内施加5-50cmH2O的负压吸引,得到10-100GΩ的高阻封接(Giga-seal),明显降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1pA的电流灵敏度、1μm的空间分辨率和10μs的时间分辨率。1983年10月,《Single-ChannelRecording》一书问世,奠定了膜片钳技术的里程碑。Sakmann和Neher也因其杰出的工作和突出贡献,荣获1991年诺贝尔医学和生理学奖。日本双分子层膜片钳价格早期的研究多使用双电极电压钳技术作细胞内电活动的记录。
离子通道是一种特殊的膜蛋白,它横跨整个膜结构,是细胞内部与部外联系的桥梁和细胞内外物质交换的孔道,当通道开放时。细胞内外的一些无机离子如Na,kCa等带电离子可经通道顺浓度梯度或电位梯度进行跨膜扩散,从而形成这些带电离子在膜内外的不同分布态势,这种态势和在不同状态下的动态变化是可兴奋细胞静息电位和动作电的基础。这些无机离子通过离子通道的进围所产生的电活动是生命活动的基础,只有在此基础上才可能有腺体分泌、肌肉收缩、基因表达、新陈代谢等生命活动。离子通道结构和功能障碍决定了许多疾病的发生和发展。因此,了解离子通道的结构、功能以及结构与功能的关系对于从分子水平深入探讨某些疾病的病理生理机制、发现特异药物或措施等均具有十分重要的理论和实际意义。滔博生物TOP-Bright专注基于多种离子通道靶点的化合物体外筛选,服务于全球药企的膜片钳公司,快速获得实验结果,专业团队,7*41小时随时人工在线咨询.
膜片钳技术的建立1.抛光及填充好玻璃管微电极,并将它固定在电极夹持器中。2.通过一个与电极夹持器连接的导管给微电极内一个压力,一直到电极浸入记录槽溶液中。3.当电极浸没在溶液中时给电极一个测定脉冲(命令电压,如5-10ms,10mV)读出电流,按照欧姆定律计算电阻。4.通过膜片钳放大器的控制键将微电极前列的连接电位(junctionpotentials)调至零位,这种电位差是由于电极内填充溶液与浸浴液不同离子成分的迁移造成的。5.用微操纵器将微电极前列在直视下靠近要记录的细胞表面,并观察电流的变化,直至阻抗达到1GΩ以上形成"干兆封接"6.调整静息膜电位到期望的钳位电压的水平,使放大器从"搜寻"转到"电压钳"时细胞不至于钳位到零。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的或多个的离子通道分子活动的技术。
1937年,Hodgkin和Huxley在乌贼巨大神经轴突细胞内实现细胞内电记录,获1963年Nobel奖1946年,凌宁和Gerard创造拉制出前列直径小于1μm的玻璃微电极,并记录了骨骼肌的电活动。玻璃微电极的应用使的电生理研究进行了重命性的变化。Voltageclamp(电压钳技术)由Cole和Marmont发明,并很快由Hodgkin和Huxley完善,真正开始了定量研究,建立了H一H模型(膜离子学说),是近代兴奋学说的基石。1948年,Katz利用细胞内微电极技术记录到了终板电位;1969年,又证实N—M接触后的Ach以"量子式"释放,获1976年Nobel奖。1976年,德国的Neher和Sakmann发明PatchClamp(膜片钳)。并在蛙横纹肌终板部位记录到乙酰胆碱引起的通道电流。滔博生物TOP-Bright专注基于多种离子通道靶点的化合物体外筛选,服务于全球药企的膜片钳公司,快速获得实验结果,专业团队,7*42小时随时人工在线咨询.膜片钳记录技术与较早的单电极电压钳位相比进步了很多,尤其在单离子通道钳位记录方面。日本多通道膜片钳技术
屯流钳素向细胞内注入刺激电流,记录膜电位对刺激电流的反应。双电极膜片钳蛋白质分子水平
离子选择性(selectivity)(大小和电荷)∶某一种离子只能通过与其相应的通道跨膜扩散(安静∶K>Na100倍、兴奋;Na>K10-20倍);各离子通道在不同状态下,对相应离子的通透性不同。门控特性(Gating)∶失活状态不仅是通道处于关闭状态,而且只有在经过一个额外刺激使通道从失活关闭状态进入静息关闭状态后,通道才能再度接受外界刺激而***开放。离子通道的功能(FunctionoflonChannels)1.产生细胞生物电现象,与细胞兴奋性相关。2.神经递质的释放、腺体的分泌、肌肉的运动、学习和记忆3.维持细胞正常形态和功能完整性膜离子通道的基因变异及功能障碍与许多疾病有关,某些先天性与后天获得性疾病是离子通道基因缺陷与功能改变的结果,称为离子通道病(ionchannelpathies)。双电极膜片钳蛋白质分子水平