生物医学:人工关节与组织工程的“光学显微镜”人工髋关节在体运动中,聚乙烯衬垫与金属股骨头间的接触应力导致衬垫磨损,可能引发假体松动。微型DIC系统结合透明关节模拟器,实时观测衬垫表面应变分布与裂纹扩展路径,发现高应变区域与磨损斑高度重合,为材料改性(如添加纳米氧化铝颗粒增强耐磨性)提供了直接证据。在组织工程领域,DIC技术用于监测细胞支架在动态拉伸下的变形行为,揭示机械刺激对干细胞分化的调控机制,推动“机械生物学”从理论走向临床应用。研索仪器光学非接触应变测量系统可拓展高速相机支持kHz级采样,实时监测瞬态应变(如冲击、振动)。海南哪里有卖数字图像相关非接触式测量

近年来,人工智能与光学测量的深度融合催生了新一代智能应变感知系统。深度学习算法直接处理原始图像,自动提取应变特征,处理速度较传统DIC提升100倍以上。例如,卷积神经网络(CNN)在低对比度散斑图像中仍可准确预测应变场,误差小于0.005με;图神经网络(GNN)则通过构建像素间拓扑关系,提升了复杂纹理表面的测量鲁棒性。多模态融合成为另一重要趋势。DIC与红外热成像结合,可同步分析热应力与机械应变;光纤传感与声发射技术集成,能区分结构变形与裂纹扩展信号。在核反应堆压力容器监测中,光纤干涉仪与超声导波传感器的协同工作,实现了毫米级蠕变位移与微米级裂纹的联合检测。光学非接触式应变测量装置无需接触被测物,研索光学应变测量规避干扰,获取更真实材料力学响应。

为了帮助用户提升测量精度与效率,研索仪器还提供完善的配套产品与技术支持。公司自主研发的 VIC-Speckle 散斑制备工具,能够制备出均匀稳定的随机散斑图案,为高质量测量数据的获取奠定基础。同时提供多种规格的标定板、光源等配套硬件,确保测量系统始终处于工作状态。在软件升级方面,公司会根据技术发展与用户需求,定期推出软件更新服务,不断丰富数据分析功能,提升系统性能。研索仪器的服务理念在教育科研领域得到了充分体现。公司荣膺达索系统 "行业贡献奖",这一荣誉正是对其在服务高校科研与教学数字化升级过程中表现的高度肯定。通过与高校共建联合实验室、参与科研项目攻关等方式,研索仪器不仅提供了先进的测量设备,更深度参与到科研过程中,为科研人员提供专业的技术指导,助力科研成果的快速转化。
作为当前主流的技术路径,数字图像相关(DIC)技术的工作流程已形成标准化范式:首先在被测物体表面制备随机散斑图案,这一图案如同 "光学指纹",为后续识别提供特征标记,可通过人工喷涂、光刻或利用材料自然纹理实现;随后采用高分辨率相机阵列同步采集变形前后的图像序列,捕捉每一个微小形变瞬间;通过零均值归一化互相关系数(ZNCC)等算法,追踪散斑在图像中的位移变化,经三维重建计算得到全场位移场与应变场数据。这种技术路径带来三大突破:其一,非接触特性消除了测量器件对测试系统的力学干扰,尤其适用于软材料、微纳结构等易损伤样品的测试;其二,全场测量能力实现了从 "点测量" 到 "面分析" 的跨越,单次测试可获取数百万个数据点,使变形分布可视化成为可能;其三,亚像素级测量精度突破了传统方法的极限,位移测量精度可达 0.01 像素,配合高分辨率相机可实现纳米级形变检测。这些优势让光学非接触测量成为解决复杂力学测试问题的方案。研索仪器VIC-3D非接触全场变形测量系统可用于汽车碰撞测试中的钣金变形分析,电池热失控膨胀监测。

在技术创新层面,研索仪器的测量系统实现了多项关键突破。其搭载的先进算法不仅能精确提取位移、应变等基础物理量,还可衍生计算泊松比、杨氏模量等材料特性参数,为材料性能评估提供数据。在动态测量场景中,VIC-3D 疲劳场与振动测量系统可轻松应对瞬态冲击与周期性振动测试,无需复杂布线即可捕捉动态变形过程。更值得关注的是,研索仪器的测量解决方案支持与有限元仿真的深度融合,通过将全场测量数据与仿真模型直接比对,解决了传统测试与模拟脱节的行业痛点,为结构优化提供闭环支撑。研索仪器光学非接触应变测量系统可结合DIC或干涉技术,实现三维应变场可视化。山东VIC-2D非接触测量系统
三维应变测量技术对于塑性材料研究来说是非常重要的工具。海南哪里有卖数字图像相关非接触式测量
在行业应用方面,研索仪器将聚焦国家战略需求,重点发力新能源、制造、生物医药等新兴领域。在新能源领域,针对氢能储运设备、光伏材料等新型产品的测试需求,开发测量解决方案;在制造领域,为半导体设备、精密仪器等提供微纳尺度测量服务;在生物医药领域,开发适用于人体组织、医疗植入物的测量系统。同时,公司将积极拓展工业在线检测市场,推动光学非接触测量技术从实验室走向生产现场,实现产品质量的实时监测与控制,助力制造业高质量发展。海南哪里有卖数字图像相关非接触式测量