首先我们来简单介绍一下激光扫描共聚焦和双光子这两种当红的显微成像技术。激光扫描共聚焦显微技术,是荧光显微成像的一种,用于激发样品的荧光信号并对其放大成像。在激光扫描共聚焦显微镜中,样品焦平面上每一时刻只有一个点被激发光照射,纵然焦平面外也有激发光照射,但通过探测器前的(pinhole),有焦平面上的荧光信号能被探测器接收。也就是说,每个时刻,只有焦平面上一个点的信号被探测。通过点扫描的方式,一个个点的信号就可以组合出终的图像。双光子显微镜(包括多光子显微镜)同样采用点扫描的方式得到图像。不同的是,其采用的激发光波长较长,只有当两个(或更多)激发光光子几乎同时轰击荧光探针的时候才可能激发出荧光信号。所以只有在光子密度特别大的焦点,出才会激发出荧光。也就是说,双光子显微镜中,同样每个时刻只有焦平面上一个点的信号被探测,并且连焦平面外的荧光信号也不会有。双光子显微镜还可以对一些具有双光子特性的染料细胞进行特定实验;美国investigator双光子显微镜荧光寿命计数

新一代微型化双光子荧光显微镜体积小,重只2.2克,适于佩戴在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到0.65μm,成像质量与商品化大型台式双光子荧光显微镜可相媲美,远优于目前领域内主导的、美国脑科学计划重要团队所研发的微型化宽场显微镜。采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。此外,采用自主设计可传导920nm飞秒激光的光子晶体光纤,该系统实现了微型双光子显微镜对脑科学领域较广泛应用的指示神经元活动的荧光探针(如GCaMP6)的有效利用。 同时采用柔性光纤束进行荧光信号的接收,解决了动物的活动和行为由于荧光传输光缆拖拽而受到干扰的难题。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精细地操控神经元和神经回路的活动。国内investigator双光子显微镜供应商联系方式双光子显微镜能够进行指标成像;

双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收2个长波长的光子,在经过一个很短激发态后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。因其光损伤小、样本透射深等优势,使得观察荧光细胞成为可能。中国医学科学院医学实验动物研究所-双光子显微镜成像平台借助于双光子显微镜成像技术及不同转基因小鼠开展对多种脏器的***成像研究。以小鼠颅内***成像为优势,可动态**观察小鼠颅内神经细胞、小胶质细胞/巨噬细胞、周细胞、血管、转移瘤细胞、胶质瘤细胞等的变化情况,在**学、神经生物学、发育生物学、神经退行性疾病等领域具有广泛应用。小鼠其它组织脏器,如脾、肺、颅骨、股骨、胸骨等也可借助本平台进行成像研究。
后续实验使用碘化丙啶(PI)来指示细胞在7、8、9和10分钟的延时观察后的损伤情况,来验证该光学系统对活细胞长期观察的适用性。在观察期间,88个焦点以100毫秒的曝光时间,曝光间隔1s照射样品,激发强度为3.21×104W/cm2,激发波长为525nm,使用前文提到的60×物镜及1.0AU孔径,图5(a)-(d)为引入PI的成像图,(e)-(h)为相应的相应衬度图。改变激发条件为每照射500ms间隔5s,得到相应的(i)-(p)。由图像可知,延时观察小于8分钟的情况下不造成可见细胞损伤,对于实际3D延时成像,由于焦平面是移动的,所以预期细胞存活时间会更长,可见这是一种在3D在体延时成像中具有很大优势的成像方案。双光子显微镜非常适合对细胞组织进行长时间在体成像。

2020年,临研所、病理科和科研处邀请北京大学王爱民副教授做了题目为“新一代微型双光子显微成像系统介绍及其在临床医疗诊断”的学术报告。学术报告由临研所医学实验研究平台潘琳老师主持。王爱民,北京大学信息科学技术学院副教授,毕业于北京大学物理系,获学士、硕士学位,后于英国巴斯大学物理系获博士学位。该研究组研发的微型双光子显微镜,第1次在国际上获得了小鼠大脑神经元和神经突触清晰稳定的动态信号,该成果获得了2017年度“中国光学进展”和“中国科学进展”,并被NatureMethods评为2018年度“年度方法--无限制行为动物成像”。目前,该研究组正在研究新一代双光子显微成像技术在临床诊断中的应用,为未来即时病理、离体组织检测、术中诊断等提供新的影像手段和分析方法。如果已经有了飞秒光,就可以几套双光子显微镜共享一台,只需分光即可。进口bruker双光子显微镜分辨率
上海双光子显微镜就找因斯蔻浦。美国investigator双光子显微镜荧光寿命计数
使用基因编码的荧光探针可以在突触和细胞分辨率下监测体内神经元信号,这是揭示动物神经活动复杂机制的关键。使用双光子显微镜(2PM)可以以亚细胞分辨率对钙离子传感器和谷氨酸传感器成像,从而测量不透明大脑深处的活动;成像膜电压变化能直接反映神经元活动,但神经元活动的速度对于常规的2PM来说太快。目前电压成像主要通过宽场显微镜实现,但它的空间分辨率较差并且只是于浅层深度。因此要在不透明的大脑中以高空间分辨率对膜电压变化进行成像,需要较提高2PM的成像速率。FACED模块输出处的子脉冲序列可以看作从虚拟光源阵列发出的光,这些子脉冲在中继到显微镜物镜后形成了一个空间上分离且时间延迟的焦点阵列。然后将该模块并入具有高速数据采集系统的标准双光子荧光显微镜中,如图2所示。光源是具有1MHz重复频率的920nm的激光器,通过FACED模块可产生80个脉冲焦点,其脉冲时间间隔为2ns。这些焦点是虚拟源的图像,虚拟源越远,物镜处的光束尺寸越大,焦点越小。光束沿y轴比x轴能更好地充满物镜,从而导致x轴的横向分辨率为0.82µm,y轴的横向分辨率为0.35µm。美国investigator双光子显微镜荧光寿命计数