也有使用相干法,即为调频连续波(FMCW)激光雷达发射一束连续的光束,频率随时间稳定地发生变化。由于源光束的频率在不断变化,光束传输距离的差异会导致频率的差异,将回波信号与本振信号混频并经低通滤波后,得到的差频信号是光束往返时间的函数。调频连续波激光雷达不会受到其他激光雷达或太阳光的干扰且无测距盲区;还可以利用多普勒频移测量物体的速度和距离。调频延续波 LiDAR 概念并不新颖,但是面对的技术挑战不少,例如发射激光的线宽限制、线性调频脉冲的频率范围、线性脉冲频率变化的线性度,以及单个线性调频脉冲的可复制性等。激光雷达的高稳定性使其在太空探测任务中备受青睐。隧道激光雷达设备

激光雷达的应用:1测量测绘,1、地形测绘,激光雷达通过揭示地面细微的高程变化来展示地貌。它较大的优势在于它是一个高速“采样工具”,激光雷达每秒从空中向地面发出数十万甚至上百万个脉冲,正是这种密集的点云使我们能够获取真实地貌。2、建筑质量控制,使用LiDAR进行建筑扫描可以确保建筑与建筑信息模型(BIM)相匹配。将来自地面扫描的点云与BIM设计对比可保证施工质量并按计划进行,LiDAR较大的优势是实时扫描,能在项目早期发现缺陷,否则,任何有缺陷的结构返工都会浪费时间和金钱。深圳四探头激光雷达市价激光雷达在地质勘探中实现了对地下矿藏的精确定位。

脉冲同步(PPS),脉冲同步通过同步信号线实现数据同步。GPS同步(PPS+UTC),通过同步信号线和 UTC 时间(GPS 时间)实现数据同步。然后我们从 LiDAR 硬件得到一串数据包,需要过一次驱动才能将其解析成点云通用的格式,如 ROSMSG 或者 pcl 点云格式,以目前较普遍的旋转式激光雷达的数据为例,其数据为 10hz,即 LiDAR 在 0.1s 时间内转一圈,并将硬件得到的数据按照不同角度切成不同的 packet,以下便是一个 packet 数据包定义示意图。每一个 packet 包含了当前扇区所有点的数据,包含每个点的时间戳,每个点的 xyz 数据,每个点的发射强度,每个点来自的激光发射机的 id 等信息。
激光雷达(Lidar)光束范围很窄,所以需要更多的纵向光束,以覆盖大的面积,所以线束决定着画面大小,扫描再通过返回的时间测量距离,并精确、快速构建模型,相比目前的其他雷达强太多,所以更适合自动驾驶系统,但也同样易受天气影像,成本较高。转镜:转镜分为一维转镜和二维转镜。一维转镜通过旋转的多面体反射镜,将激光反射到不同的方向;二维转镜顾名思义内部集成了两个转镜,一个多边棱镜负责横向旋转,一个负责纵向翻转,实现一束激光包揽横纵双向扫描。转镜激光雷达体积小、成本低,与机械式激光雷达效果一致,但机械频率也很高,在寿命上不够理想。激光雷达的设计优化提高了其在复杂环境中的可靠性。

不同类激光雷达的优缺点:机械旋转式激光雷达,机械旋转式Lidar的发射和接收模块存在宏观意义上的转动。在竖直方向上排布多组激光线束,发射模块以一定频率发射激光线,通过不断旋转发射头实现动态扫描。机械旋转Lidar分立的收发组件导致生产过程要人工光路对准,费时费力,可量产性差。目前有的机械旋转Lidar厂商在走芯片化的路线,将多线激光发射模组集成到一片芯片,提高生产效率和量产性,降低成本,减小旋转部件的大小和体积,使其更易过车规。优点:技术成熟;扫描速度快;可360度扫描。缺点:可量产性差:光路调试、装配复杂,生产效率低;价格贵:靠增加收发模块的数量实现高线束,元器件成本高,主机厂难以接受;难过车规:旋转部件体积/重量庞大,难以满足车规的严苛要求;造型不易于集成到车体。智能零售中激光雷达分析顾客行为,优化店铺空间布局。Horizon激光雷达渠道
安防监控运用激光雷达实时监测,及时发现入侵异常情况。隧道激光雷达设备
测远能力: 一般指激光雷达对于10%低反射率目标物的较远探测距离。较近测量距离:激光雷达能够输出可靠探测数据的较近距离。测距盲区:从激光雷达外罩到较近测量距离之间的范围,这段距离内激光雷达无法获取有效的测量信号,无法对目标物信息进行反馈。角度盲区:激光雷达视场角范围没有覆盖的区域,系统无法获取这些区域内的目标物信息。角度分辨率:激光雷达相邻两个探测点之间的角度间隔,分为水平角度分辨率与垂直角度分辨率。相邻探测点之间角度间隔越小,对目标物的细节分辨能力越强。隧道激光雷达设备