在土木工程领域,研索仪器的技术为大型结构安全评估提供了全新手段。在混凝土结构测试中,DIC 系统可精确捕捉裂缝从起裂到贯通的全过程,输出裂缝扩展速率与应变分布数据,为评估混凝土材料的抗裂性能提供直观依据。在桥梁、隧道等大型构筑物的模型试验中,通过对缩尺模型表面的全场监测,可直观呈现结构在荷载作用下的位移场演化,清晰捕捉拱顶效应形成、滑移带发展等关键现象,为实际工程的安全设计提供可靠参考。在矿山工程中,测量系统能够记录采动过程中的岩层变形数据,为顶板塌陷预警、矿柱稳定性评估提供定量依据,助力矿山安全生产。振弦式应变测量传感器研究起源于20世纪30年代。西安VIC-3D数字图像相关技术变形测量

在材料科学、结构工程与生物力学等领域,应变测量是揭示材料力学行为、评估结构安全性的关键手段。传统应变测量依赖电阻应变片、引伸计等接触式传感器,虽具有高精度与低成本优势,但在高温、腐蚀、高速加载或微纳尺度等极端条件下,接触式方法的局限性日益凸显。光学非接触应变测量技术凭借其非侵入、全场测量、高空间分辨率及动态响应能力,正逐步成为复杂环境下应变分析的优先选择工具。本文将从光学测量的物理基础出发,系统梳理主流技术路线,探讨其技术挑战与创新方向,并结合典型应用场景展现其工程价值。广东全场数字图像相关技术应变测量光学三维应变测量技术达到了非接触性、无破坏性、精度和分辨率高以及测量速度快等特点。

汽车工程领域是研索仪器的重点服务方向,其技术解决方案贯穿从零部件研发到整车测试的全流程。在车身设计阶段,通过 VIC-3D 系统对车身框架进行静态加载测试,获取全场应变云图,可精确定位应力集中区域,指导结构优化以提升碰撞安全性。在动力总成研发中,动态测量系统可监测发动机缸体在运行过程中的振动变形,帮助工程师优化结构设计以降低噪声与振动。在新能源汽车电池测试中,DIC 技术能够捕捉电池包在充放电循环与温度变化过程中的微变形,为电池结构安全性设计提供关键依据,有效降低热失控风险。这些应用帮助汽车制造商提升了产品性能与可靠性。
光学非接触应变测量:技术原理、应用场景与江浙沪供应商推荐光学非接触应变测量技术是通过光学成像、激光干涉、数字图像相关(DIC)等原理,在不接触被测物体的前提下,测量材料或结构在受力、温度变化、振动等工况下的形变、应变及位移数据的无损检测技术。其优势在于无接触干扰、高精度、大范围测量、适用于复杂工况,应用于航空航天、汽车制造、土木工程、材料研发、电子电器等领域。数字图像相关法(DIC)通过拍摄物体表面散斑图像,对比变形前后的像素位移,计算应变 / 位移。电阻应变测量(电测法)是实验应力分析中使用比较广并且适应性比较强的方法之一。

光学非接触应变测量技术的广泛应用,正在重塑多个关键行业的研发模式。在航空航天领域,研索仪器的 isi-sys 激光无损检测系统采用 Shearography/ESPI 技术,可对复合材料结构进行非破坏性强度检测,精确识别内部缺陷,为飞行器安全提供保障;在汽车工程中,通过 VIC 系列系统对车身及零部件进行受力变形测试,帮助制造商优化设计,提升产品安全性与耐用性。在新能源领域,该技术可用于电池材料的力学性能测试,监测充放电过程中的微变形;而在高校与科研机构,从生物组织力学研究到新型材料开发,研索仪器的测量系统已成为基础研究的重要工具。这些应用场景共同印证了光学非接触测量技术在推动产业升级与科研创新中的关键价值。研索仪器光学非接触应变测量系统具有亚微米级位移分辨率,应变测量精度达0.005%。全场三维非接触测量装置
光学非接触应变测量技术基于光学原理,通过分析物体表面在受力变形前后光学特性的变化来获取应变信息。西安VIC-3D数字图像相关技术变形测量
能源领域:核反应堆压力容器蠕变监测核反应堆运行过程中,压力容器需承受高温高压与中子辐照,蠕变变形是影响安全性的关键因素。光纤干涉传感网络沿容器周向布置,可连续监测毫米级蠕变位移,数据通过无线传输至控制中心,实现全生命周期健康管理。生物医学:人工关节磨损评估人工髋关节在体运动过程中,聚乙烯衬垫与金属股骨头间的接触应力导致衬垫磨损,可能引发假体松动。微型DIC系统结合透明关节模拟器,实时观测衬垫表面应变分布与裂纹扩展路径,为材料改性与结构设计提供依据。西安VIC-3D数字图像相关技术变形测量