在产业生态构建方面,研索仪器将发挥自身技术优势,推动 "产学研用" 协同创新网络的建设。通过与高校共建科研平台、与企业联合开发设备、与行业协会共建标准体系等方式,促进测量技术的标准化与规范化发展。公司将持续举办技术交流活动,分享前沿技术与应用案例,培育光学测量技术人才,推动整个行业的技术进步。在精密测量成为质量控制与创新研发核心竞争力的现在,光学非接触应变测量技术已从单纯的测试工具升级为推动技术进步的重要引擎。研索仪器科技(上海)有限公司凭借专业的技术引进、完善的产品布局、深度的技术整合与贴心的服务支撑,正带领中国光学非接触测量领域的发展方向。从微观材料研究到大型结构检测,从常规环境到极端条件,研索仪器正以精确的数据力量,助力中国科研突破与产业升级,在高质量发展的道路上持续赋能。研索仪器光学非接触应变测量系统可拓展高速相机支持kHz级采样,实时监测瞬态应变(如冲击、振动)。浙江哪里有卖DIC非接触式应变测量系统

土木工程桥梁、建筑结构的荷载试验应变监测;混凝土、钢结构的长期变形跟踪;隧道、大坝的位移与应变安全监测。5. 电子电器芯片、电路板在温度循环中的热应变分析;手机、笔记本电脑外壳的抗压 / 抗摔应变测试;电池封装结构的变形监测。散斑制备:DIC 技术需在被测物体表面制作均匀散斑(喷漆 / 贴纸),影响测量精度;环境要求:激光干涉法对振动、温度变化敏感,需在实验室或稳定环境下使用;数据处理:选择自带专业分析软件的设备,减少后期数据处理工作量;校准需求:定期对设备进行校准(如激光干涉仪需每年校准一次),确保数据准确性。新疆VIC-3D非接触应变测量应变测量十分复杂,多种因素会直接或间接地影响测量效果。

ESPI:动态全场测量的先锋ESPI利用激光散斑的随机性作为信息载体,通过双曝光或时间序列干涉图处理,提取变形引起的相位变化。其独特优势在于无需制备光栅或标记点,适用于粗糙表面与动态过程测量。在航空航天领域,ESPI已用于检测飞机蒙皮在气动载荷下的振动模态与疲劳裂纹萌生。云纹干涉术:高灵敏度与高空间分辨率的平衡云纹干涉术通过交叉光栅衍射产生高频云纹条纹,其灵敏度可达亚微米级,空间分辨率优于10线对/毫米。该技术特别适用于金属材料塑性变形、复合材料界面脱粘等微区应变分析。例如,在碳纤维复合材料层压板测试中,云纹干涉术可清晰捕捉层间剪切应变集中现象,为结构优化提供数据支撑。
近年来,人工智能与光学测量的深度融合催生了新一代智能应变感知系统。深度学习算法直接处理原始图像,自动提取应变特征,处理速度较传统DIC提升100倍以上。例如,卷积神经网络(CNN)在低对比度散斑图像中仍可准确预测应变场,误差小于0.005με;图神经网络(GNN)则通过构建像素间拓扑关系,提升了复杂纹理表面的测量鲁棒性。多模态融合成为另一重要趋势。DIC与红外热成像结合,可同步分析热应力与机械应变;光纤传感与声发射技术集成,能区分结构变形与裂纹扩展信号。在核反应堆压力容器监测中,光纤干涉仪与超声导波传感器的协同工作,实现了毫米级蠕变位移与微米级裂纹的联合检测。采用先进DIC/VIC技术,研索系统提供亚微米级非接触应变测量解决方案。

作为美国 Correlated Solutions 公司(全球 DIC 技术创始者)的中国区合作伙伴,研索仪器构建了覆盖 "基础测试 - 特殊场景 - 行业定制" 的全维度产品体系,将国际技术与本土需求深度融合。其产品布局呈现出鲜明的多尺度、全工况适配特征,从微观材料分析到大型结构检测均能提供解决方案。在基础测量领域,VIC 系列产品构成了技术基石。VIC-2D 平面应变测量系统以超过 100 万数据点 / 秒的处理速度,支持光学畸变与 SEM 漂移校正,可在拉伸、压缩、弯曲等常规工况下快速输出平面应变云图,成为高校材料力学实验室的标准配置。VIC-3D 三维表面应变测量系统则通过双目立体视觉原理,实现了三维位移与应变场的同步测量,其行业前沿的精度与可重复性,可满足从金属材料到高分子复合材料的多样化测试需求。该系统搭载的先进算法不仅能输出位移、应变等基础参数,还可直接计算泊松比、杨氏模量等材料本构参数,为材料性能评估提供一站式数据支撑。研索仪器VIC-3D非接触全场变形测量系统可用于科研实验复合材料分层失效研究,微电子封装焊点疲劳评估。福建全场三维非接触应变与运动测量系统
随着科技的不断进步,光学非接触应变测量技术正朝着更高精度、更复杂环境适应、更智能分析的方向演进。浙江哪里有卖DIC非接触式应变测量系统
光学非接触应变测量的关键优势源于其创新原理与技术特性。与接触式测量相比,该技术通过光学系统采集物体表面图像信息进行分析,全程无需与被测对象产生机械交互,从根本上避免了加载干扰、样品损伤等问题。其中,数字图像相关(DIC)技术作为主流实现方式,通过三大关键步骤完成精密测量:首先在物体表面制作随机散斑图案作为特征标记,可采用人工喷涂或利用自然纹理;随后通过高分辨率相机在变形过程中连续采集图像序列;借助相关匹配算法追踪散斑灰度模式变化,计算得到三维位移场与应变场数据。这种测量方式不仅实现了从 "单点测量" 到 "全场分析" 的跨越,更将位移测量精度提升至 0.01 像素级别,为细微变形检测提供了可能。浙江哪里有卖DIC非接触式应变测量系统