在材料科学、结构工程与生物力学等领域,应变测量是揭示材料力学行为、评估结构安全性的关键手段。传统应变测量依赖电阻应变片、引伸计等接触式传感器,虽具有高精度与低成本优势,但在高温、腐蚀、高速加载或微纳尺度等极端条件下,接触式方法的局限性日益凸显。光学非接触应变测量技术凭借其非侵入、全场测量、高空间分辨率及动态响应能力,正逐步成为复杂环境下应变分析的优先选择工具。本文将从光学测量的物理基础出发,系统梳理主流技术路线,探讨其技术挑战与创新方向,并结合典型应用场景展现其工程价值。研索仪器VIC-3D非接触全场变形测量系统可用于汽车碰撞测试中的钣金变形分析,电池热失控膨胀监测。安徽光学数字图像相关应变与运动测量系统

实际光学应变测量系统往往综合利用多种物理机制。例如,数字图像相关法(DIC)同时依赖光强调制与几何变形约束,而电子散斑干涉术(ESPI)则结合了相位调制与散斑统计特性,这种多机制融合提升了测量的鲁棒性与精度。数字图像相关法(DIC):从实验室到工业现场的普适化技术DIC通过对比变形前后两幅数字图像的灰度分布,利用相关函数匹配算法计算表面位移场,进而通过微分运算获得应变场。其流程包括:表面随机散斑制备、图像采集、亚像素位移搜索、全场应变计算。技术优势DIC的突破在于其普适性:对测量环境无特殊要求(可适应高温、真空、腐蚀等极端条件),对被测物体形状无限制(平面、曲面、复杂结构均可),且支持静态、动态、瞬态全过程测量。现代高速相机与GPU并行计算技术的发展,使DIC的实时处理速度突破每秒千帧,满足冲击等瞬态过程分析需求。湖北全场非接触应变系统研索仪器科技光学非接触应变测量,软件分析功能强,快速出应变结果。

汽车工程领域是研索仪器的重点服务方向,其技术解决方案贯穿从零部件研发到整车测试的全流程。在车身设计阶段,通过 VIC-3D 系统对车身框架进行静态加载测试,获取全场应变云图,可精确定位应力集中区域,指导结构优化以提升碰撞安全性。在动力总成研发中,动态测量系统可监测发动机缸体在运行过程中的振动变形,帮助工程师优化结构设计以降低噪声与振动。在新能源汽车电池测试中,DIC 技术能够捕捉电池包在充放电循环与温度变化过程中的微变形,为电池结构安全性设计提供关键依据,有效降低热失控风险。这些应用帮助汽车制造商提升了产品性能与可靠性。
光纤干涉术:分布式传感的新范式光纤布拉格光栅(FBG)与法布里-珀罗(FP)干涉仪通过将光栅或腔体结构写入光纤,实现应变与温度的分布式测量。光纤传感器的抗电磁干扰、耐腐蚀与长距离传输特性,使其在桥梁健康监测、油气管道应变评估等场景中具有不可替代性。例如,港珠澳大桥健康监测系统部署了数千个FBG传感器,实时采集结构应变数据,保障大桥长期安全运营。激光散斑技术的本质是利用表面微观粗糙度对激光的散射效应形成随机强度分布,通过分析散斑图案变化反推表面变形。其发展历程可分为全息散斑干涉术、电子散斑干涉术与数字散斑相关法三个阶段。光学非接触应变测量技术基于光学原理,通过分析物体表面在受力变形前后光学特性的变化来获取应变信息。

针对特殊测试场景,研索仪器提供了定制化解决方案。在介观尺度测量领域,µTS 介观尺度原位加载系统填补了纳米压头与宏观加载设备之间的技术空白,通过 DIC 技术与显微镜结合,可获取局部应变场的精细数据;面对极端环境需求,MML 极端环境微纳米力学测试系统能在真空环境下 - 100℃至 1000℃的温度范围内实现纳米级力学测试,攻克了恶劣条件下的测量难题。此外,红外 3D 温度场耦合 DIC 系统、3D Micro-DIC 显微测量系统等特色产品,进一步拓展了测量技术的应用边界。研索仪器非接触光学测量仪具有亚微米级位移分辨率,可捕捉微小变形(如MEMS器件热膨胀)。福建光学非接触式应变与运动测量系统
光学非接触应变测量认准研索仪器科技(上海)有限公司!安徽光学数字图像相关应变与运动测量系统
高校与科研机构是研索仪器的关键用户群体,其产品已成为材料科学、力学工程等领域基础研究的重要工具。在生物材料研究中,Micro-DIC 系统可测量软骨、血管等生物组织在力学载荷下的变形行为,为组织工程支架设计提供参考;在新型功能材料研发中,介观尺度测量系统帮助科研人员揭示材料微观结构与宏观性能的内在关联;在仿生材料研究中,通过对比天然材料与仿生制品的力学响应差异,为高性能仿生材料开发提供指导。研索仪器与上海交大、北航等高校的深度合作,不仅推动了科研成果的产出,更助力了创新人才的培养。安徽光学数字图像相关应变与运动测量系统