研索仪器与达索系统的深度合作,进一步强化了 "仿真 - 实验" 的协同能力。作为达索系统在教育科研领域的重要生态伙伴,研索仪器将 DIC 测量技术与达索系统的仿真平台相结合,打造了 "仿真计算 + 实验验证" 融合的多尺度科研平台。在北京大学材料科学与工程学院的智能实验室建设项目中,研索仪器通过 BIOVIA ONE Lab 平台实现了高通量实验任务管理与跨学科数据的高效流转,DIC 测量数据可直接导入仿真系统进行模型校准;在中南大学的材料力学研究中,通过 Materials Studio 与 ABAQUS 协同建模,实现了从微观仿真到宏观测试数据的闭环对比,大幅加速了科研进展。这种 "测量数据驱动仿真优化" 的模式,已成为制造领域研发创新的重要范式。光学非接触应变测量技术基于光学原理,通过分析物体表面在受力变形前后光学特性的变化来获取应变信息。江苏三维全场非接触式总代理

在材料科学、结构工程与生物力学等领域,应变测量是揭示材料力学行为、评估结构安全性的关键手段。传统应变测量依赖电阻应变片、引伸计等接触式传感器,虽具有高精度与低成本优势,但在高温、腐蚀、高速加载或微纳尺度等极端条件下,接触式方法的局限性日益凸显。光学非接触应变测量技术凭借其非侵入、全场测量、高空间分辨率及动态响应能力,正逐步成为复杂环境下应变分析的优先选择工具。本文将从光学测量的物理基础出发,系统梳理主流技术路线,探讨其技术挑战与创新方向,并结合典型应用场景展现其工程价值。广西哪里有卖数字图像相关非接触测量系统研索仪器科技光学非接触应变测量,与加载系统兼容,实现同步测量。

全息散斑干涉术:理论奠基与实验室验证全息散斑干涉术通过记录物体变形前后的全息图,利用干涉条纹提取位移信息。该技术理论上可实现波长量级的测量精度,但对防振平台、激光相干性等实验条件要求严苛,难以推广至工业现场。数字散斑相关法:计算光学驱动的工程化突破数字散斑相关法(即DIC的前身)通过数字图像处理替代全息记录,降低了系统复杂度。其关键创新在于引入亚像素位移搜索算法(如牛顿-拉夫逊迭代法),使测量精度突破像素级限制。现代DIC系统结合蓝光LED光源与高分辨率工业相机,在室温条件下即可实现0.01με(微应变)的测量精度,满足工程测试需求。
作为当前主流的技术路径,数字图像相关(DIC)技术的工作流程已形成标准化范式:首先在被测物体表面制备随机散斑图案,这一图案如同 "光学指纹",为后续识别提供特征标记,可通过人工喷涂、光刻或利用材料自然纹理实现;随后采用高分辨率相机阵列同步采集变形前后的图像序列,捕捉每一个微小形变瞬间;通过零均值归一化互相关系数(ZNCC)等算法,追踪散斑在图像中的位移变化,经三维重建计算得到全场位移场与应变场数据。这种技术路径带来三大突破:其一,非接触特性消除了测量器件对测试系统的力学干扰,尤其适用于软材料、微纳结构等易损伤样品的测试;其二,全场测量能力实现了从 "点测量" 到 "面分析" 的跨越,单次测试可获取数百万个数据点,使变形分布可视化成为可能;其三,亚像素级测量精度突破了传统方法的极限,位移测量精度可达 0.01 像素,配合高分辨率相机可实现纳米级形变检测。这些优势让光学非接触测量成为解决复杂力学测试问题的方案。振弦式应变测量传感器具有较强的抗干扰能力的优点。

针对特殊测试场景,研索仪器提供了定制化解决方案。在介观尺度测量领域,µTS 介观尺度原位加载系统填补了纳米压头与宏观加载设备之间的技术空白,通过 DIC 技术与显微镜结合,可获取局部应变场的精细数据;面对极端环境需求,MML 极端环境微纳米力学测试系统能在真空环境下 - 100℃至 1000℃的温度范围内实现纳米级力学测试,攻克了恶劣条件下的测量难题。此外,红外 3D 温度场耦合 DIC 系统、3D Micro-DIC 显微测量系统等特色产品,进一步拓展了测量技术的应用边界。研索仪器科技光学非接触应变测量,高速成像技术,实时呈现动态应变变化。新疆扫描电镜数字图像相关技术应变测量装置
研索仪器可实时、无损地获取材料/结构表面的三维形变与应变场分布。江苏三维全场非接触式总代理
在材料科学与工程测试领域,应变测量是评估材料力学性能、优化结构设计的关键环节。传统接触式测量方法依赖应变片、引伸计等器件与被测物体直接接触,不仅易干扰测试状态、破坏样品完整性,更难以捕捉全场变形信息。随着工业制造向高精度、复杂化升级,光学非接触应变测量技术应运而生,成为打破传统局限的变革性解决方案。研索仪器科技(上海)有限公司(ACQTEC)作为该领域的领航者,以数字图像相关(DIC)技术为关键,构建起覆盖多尺度、多场景的测量体系,为科研与工业领域提供精确可靠的测试支撑。江苏三维全场非接触式总代理