激光干涉法(如 ESPI、Shearography)利用激光干涉条纹的变化反映微小形变,精度达纳米级,超高精度、非接触、可测全场应变,精密零件检测、复合材料缺陷识别、振动模态分析,激光多普勒测速 / 测振(LDV),基于多普勒效应,测量物体表面的速度 / 振动位移,间接推导应变,动态响应快(纳秒级)、远距离测量,高速旋转部件监测、振动应变分析、冲击载荷测试,全息干涉法,记录物体变形前后的激光全息图,通过干涉条纹还原三维形变,三维全场测量、高精度形变还原,航空航天结构件检测、精密仪器变形分析。研索仪器光学非接触应变测量系统具有亚微米级位移分辨率,应变测量精度达0.005%。西安全场非接触总代理

典型应用场景(结合工业 / 研发需求)1. 材料研发与测试金属 / 复合材料的拉伸、压缩、弯曲、疲劳试验中的应变监测;橡胶、塑料等柔性材料的大变形应变测量;高温合金在极端温度下的热应变分析。2. 汽车制造车身结构在碰撞试验中的变形与应变分布;发动机缸体、底盘部件的振动应变监测;汽车玻璃、内饰件的装配应力检测。3. 航空航天机翼、机身结构的静态 / 动态应变测试;航天器外壳在热真空环境下的热变形测量;发动机叶片的高速旋转应变监测。江苏哪里有卖全场非接触式测量三维应变测量技术对于塑性材料研究来说是非常重要的工具。

数字图像相关法(DIC)的提出标志着光学测量进入数字化时代。通过将散斑图案数字化,结合亚像素位移搜索算法,DIC摆脱了胶片记录的束缚,测量速度与精度提升。21世纪初,三维DIC技术通过双目视觉或多相机系统重构表面三维形貌,解决了平面DIC因出平面位移导致的误差问题,在复合材料冲击测试中实现了应变场与三维位移场的同步获取。与此同时,光纤传感技术凭借其抗电磁干扰与长距离传输优势,在大型结构健康监测中崭露头角。光纤布拉格光栅(FBG)通过波长编码应变信息,单根光纤可串联数十个传感器,实现桥梁、风电叶片等结构的分布式应变监测。例如,港珠澳大桥部署的FBG传感网络,连续5年实时采集超过10万个应变数据点,支撑了大桥全生命周期安全评估。
完善的服务体系是研索仪器技术价值实现的重要保障。公司始终秉持 "技术产品化、服务项目化" 的理念,构建了覆盖全国的服务网络与全流程服务链条,确保技术方案能够精确匹配用户需求。在服务网络布局方面,研索仪器已在华东、中南、华南等重点区域设立办事处,并在长沙建立了专业的产品展示与技术服务中心,形成了 "总部统筹、区域响应" 的服务格局。这种布局确保了能够快速响应客户需求,提供及时的现场技术支持。无论是设备安装调试、操作培训还是故障维修,都能实现高效对接,降低用户的时间成本。机械式应变测量已有很长的历史。

研索仪器与达索系统的深度合作,进一步强化了 "仿真 - 实验" 的协同能力。作为达索系统在教育科研领域的重要生态伙伴,研索仪器将 DIC 测量技术与达索系统的仿真平台相结合,打造了 "仿真计算 + 实验验证" 融合的多尺度科研平台。在北京大学材料科学与工程学院的智能实验室建设项目中,研索仪器通过 BIOVIA ONE Lab 平台实现了高通量实验任务管理与跨学科数据的高效流转,DIC 测量数据可直接导入仿真系统进行模型校准;在中南大学的材料力学研究中,通过 Materials Studio 与 ABAQUS 协同建模,实现了从微观仿真到宏观测试数据的闭环对比,大幅加速了科研进展。这种 "测量数据驱动仿真优化" 的模式,已成为制造领域研发创新的重要范式。研索仪器科技光学非接触应变测量,高精度捕捉微小应变,数据可靠。河南哪里有卖DIC非接触应变系统
研索仪器科技光学非接触应变测量,便携式设计,方便现场灵活测量。西安全场非接触总代理
人工智能赋能的数据处理传统光学测量数据处理依赖人工特征提取与参数调优,效率与泛化能力受限。深度学习技术的引入为这一问题提供了解决方案。例如,卷积神经网络(CNN)可直接从原始图像中预测应变场,处理速度较传统DIC算法提升两个数量级;生成对抗网络(GAN)则可用于散斑图案增强,提升低对比度图像的测量精度。航空航天:复合材料结构健康监测在C919大型客机机翼壁板测试中,三维DIC系统实时采集壁板在气动载荷下的应变分布,结合有限元模型验证设计合理性。测试结果表明,光学测量数据与数值模拟结果吻合度超过95%,缩短了适航认证周期。西安全场非接触总代理