光学应变测量的历史可追溯至19世纪干涉仪的发明,但其真正从实验室走向工程应用,得益于20世纪中叶激光技术、计算机视觉与数字信号处理的突破。纵观其发展历程,可划分为三个阶段:激光器的出现使高相干光源成为可能,推动了电子散斑干涉术(ESPI)与云纹干涉术的诞生。ESPI通过记录物体变形前后的散斑干涉图,利用条纹分析提取位移场,实现了全场应变测量,但依赖胶片记录与人工判读,效率低下。与此同时,全息干涉术在理论层面证明了光学测量可达波长级精度,却因防振要求苛刻而局限于静态测量。振弦式应变测量传感器研究起源于20世纪30年代。贵州哪里有卖VIC-2D非接触应变测量

近年来,DIC技术向三维化与微型化演进。三维DIC通过双目视觉或多相机系统重建表面三维形貌,消除平面DIC因出平面位移导致的测量误差,在复合材料层间剪切测试中展现出独特优势。微型DIC则结合显微成像技术,实现微米级分辨率的应变测量,为MEMS器件、生物细胞力学研究提供利器。干涉测量以光波波长为基准,通过检测干涉条纹变化实现纳米级位移测量。根据干涉光路设计,可分为电子散斑干涉术(ESPI)、云纹干涉术与光纤干涉术等分支。新疆哪里有卖DIC非接触式变形测量研索科技光学非接触应变测量,高效助力结构力学性能研究。

技术特点非接触性:避免接触式测量(如应变片)对被测物体的力学干扰,尤其适用于柔软材料、高温 / 低温环境、高速运动物体;高精度:应变测量精度可达 10⁻⁶~10⁻⁹量级,位移精度可达纳米级(激光干涉法)或微米级(DIC);全场测量:可同时获取被测物体表面任意点的应变 / 位移数据,而非单点测量,便于分析整体变形规律;适应性强:可用于高温、低温、高压、强腐蚀、高速运动等恶劣工况,兼容金属、复合材料、塑料、橡胶等多种材料。
光学非接触应变测量的发展,本质上是光学、材料、计算科学与工程应用交叉融合的结果。三大前沿领域的突破正重塑光学测量的技术边界:超快光学:捕捉瞬态变形的“光学快门”飞秒激光技术的发展使光学测量的时间分辨率突破皮秒级。在材料动态力学性能测试中,超快DIC系统结合飞秒激光脉冲照明与高速相机,可捕捉金属材料在冲击载荷下的绝热剪切带演化过程,揭示应变率对材料失效模式的影响机制。例如,在钛合金靶板穿甲试验中,超快光学测量清晰记录了弹头接触瞬间(<1μs)的应变波传播与局部熔化现象,为装甲防护设计提供了关键数据。研索仪器VIC-3D非接触全场变形测量系统可用于科研实验复合材料分层失效研究,微电子封装焊点疲劳评估。

完善的服务体系是研索仪器技术落地的重要支撑。公司在华东、中南、华南等地设有办事处,并在长沙建立产品展示与技术服务中心,形成覆盖全国的服务网络。针对不同行业需求,研索仪器提供从方案设计、设备安装到操作培训的全流程服务,配备专业技术团队提供实时技术支持。此外,公司还提供 VIC-Speckle 散斑制备工具、标定硬件等配套产品,帮助用户提升测量精度与效率,真正实现 "过程标准化、数据精确可评估" 的服务目标。随着科技进步,光学非接触应变测量技术正朝着更高精度、更复杂环境适应的方向发展。研索仪器将持续深耕 DIC 技术应用,依托全球前沿的产品资源与本土化服务优势,不断拓展测量技术的应用场景。从微观材料研究到大型结构检测,从常规环境到极端条件,研索仪器正以精确的数据力量,助力中国科研突破与产业升级。应变测量十分复杂,多种因素会直接或间接地影响测量效果。浙江高速光学非接触式应变测量装置
无需接触被测物,研索光学应变测量规避干扰,获取更真实材料力学响应。贵州哪里有卖VIC-2D非接触应变测量
全息散斑干涉术:理论奠基与实验室验证全息散斑干涉术通过记录物体变形前后的全息图,利用干涉条纹提取位移信息。该技术理论上可实现波长量级的测量精度,但对防振平台、激光相干性等实验条件要求严苛,难以推广至工业现场。数字散斑相关法:计算光学驱动的工程化突破数字散斑相关法(即DIC的前身)通过数字图像处理替代全息记录,降低了系统复杂度。其关键创新在于引入亚像素位移搜索算法(如牛顿-拉夫逊迭代法),使测量精度突破像素级限制。现代DIC系统结合蓝光LED光源与高分辨率工业相机,在室温条件下即可实现0.01με(微应变)的测量精度,满足工程测试需求。贵州哪里有卖VIC-2D非接触应变测量