针对特殊测试场景,研索仪器提供了定制化解决方案。在介观尺度测量领域,µTS 介观尺度原位加载系统填补了纳米压头与宏观加载设备之间的技术空白,通过 DIC 技术与显微镜结合,可获取局部应变场的精细数据;面对极端环境需求,MML 极端环境微纳米力学测试系统能在真空环境下 - 100℃至 1000℃的温度范围内实现纳米级力学测试,攻克了恶劣条件下的测量难题。此外,红外 3D 温度场耦合 DIC 系统、3D Micro-DIC 显微测量系统等特色产品,进一步拓展了测量技术的应用边界。光学三维应变测量技术达到了非接触性、无破坏性、精度和分辨率高以及测量速度快等特点。湖北全场非接触变形测量

光学非接触应变测量技术的广泛应用,正在重塑多个关键行业的研发与生产模式。研索仪器凭借其完善的产品体系与专业的技术服务,已在航空航天、汽车工程、土木工程、新能源等领域积累了大量案例,成为行业技术升级的重要推动者。在航空航天领域,安全性与轻量化是永恒的追求,研索仪器的测量技术为这一目标提供了精确保障。其 isi-sys 激光无损检测系统采用 Shearography/ESPI 技术,可对复合材料结构进行非破坏性强度检测,识别内部缺陷与分层损伤,无需拆解即可完成飞行器结构的安全评估。在飞机风洞试验中,VIC-3D 系统可实时测量不同攻角、风速条件下机翼的动态变形,获取关键部位的应变分布与振动特性,为机翼结构优化提供数据支撑。在火箭发动机涡轮叶片测试中,极端环境测量系统能够模拟高温高压工况,监测叶片在工作状态下的变形情况,确保发动机运行的可靠性。福建全场非接触式应变测量研索仪器光学非接触应变测量系统有很好的环境兼容性,耐高温、腐蚀等恶劣条件(如发动机部件热变形测试)。

在动态与瞬态测量领域,研索仪器的技术优势更为突出。其 VIC-3D 疲劳场与振动测量系统可搭配帧率高达 20 万 fps 的高速摄像机,轻松捕捉瞬态冲击、周期性振动等动态过程中的变形信息,无需复杂布线即可实现动态变形的全场可视化。在汽车碰撞测试中,该系统能记录车身关键部位的应变峰值与变形轨迹;在航空航天领域,可用于机翼动态变形、旋翼高速旋转轨迹的测量分析,为结构可靠性设计提供关键数据。此外,红外 3D 温度场耦合 DIC 系统实现了温度场与应变场的同步测量,3D Micro-DIC 显微测量系统将精度提升至微米级,进一步拓展了测量技术的应用边界。
土木工程桥梁、建筑结构的荷载试验应变监测;混凝土、钢结构的长期变形跟踪;隧道、大坝的位移与应变安全监测。5. 电子电器芯片、电路板在温度循环中的热应变分析;手机、笔记本电脑外壳的抗压 / 抗摔应变测试;电池封装结构的变形监测。散斑制备:DIC 技术需在被测物体表面制作均匀散斑(喷漆 / 贴纸),影响测量精度;环境要求:激光干涉法对振动、温度变化敏感,需在实验室或稳定环境下使用;数据处理:选择自带专业分析软件的设备,减少后期数据处理工作量;校准需求:定期对设备进行校准(如激光干涉仪需每年校准一次),确保数据准确性。研索仪器VIC-3D非接触全场变形测量系统可用于工程监测中大型结构(风电叶片、钢结构桥梁)的长期健康诊断。

人工智能赋能的数据处理传统光学测量数据处理依赖人工特征提取与参数调优,效率与泛化能力受限。深度学习技术的引入为这一问题提供了解决方案。例如,卷积神经网络(CNN)可直接从原始图像中预测应变场,处理速度较传统DIC算法提升两个数量级;生成对抗网络(GAN)则可用于散斑图案增强,提升低对比度图像的测量精度。航空航天:复合材料结构健康监测在C919大型客机机翼壁板测试中,三维DIC系统实时采集壁板在气动载荷下的应变分布,结合有限元模型验证设计合理性。测试结果表明,光学测量数据与数值模拟结果吻合度超过95%,缩短了适航认证周期。研索仪器光学非接触全场应变测量系统是一种基于光学原理(如数字图像相关DIC)的高精度应变分析工具。西安扫描电镜数字图像相关应变测量
研索仪器科技光学非接触应变测量,非接触式操作,避免对试样产生干扰。湖北全场非接触变形测量
航空航天:复合材料结构的“光学体检”,商用飞机机翼壁板采用碳纤维复合材料以减轻重量,但其各向异性特性导致应变分布复杂,传统应变片易引发层间损伤。三维DIC系统在机翼静力试验中,实时采集壁板在气动载荷下的全场应变,结合数字体积相关(DVC)技术分析内部纤维断裂与基体裂纹扩展,使复合材料结构设计周期缩短40%。在火箭燃料贮箱水压试验中,光纤传感网络沿贮箱周向布置,连续监测毫米级蠕变位移,数据通过无线传输至控制中心,实现全生命周期健康管理。湖北全场非接触变形测量